
Cryptography Whitepaper

PACE

December 2022

1 Introduction

PACE is a fitness tracker that respects your privacy.
It is end-to-end encrypted and is designed to be
secure.

Fitness and geolocation data are among the most
sensitive and private data about a person. Anyone
having access to these can derive a lot of informa-
tion such as the health of an individu, the habits,
the living location, etc. Articles are frequently pub-
lished trying to raise awareness about the privacy
issues of existing fitness apps and explain how to
mitigate the privacy issues by tweaking the settings
of the trackers. However, the security issues remain
as the data are unencrypted therefore accessible by
the apps providers or subject to leak in case of a
security breach.

Fitness trackers are more popular than ever.
They provide a solution to keep track of train-
ing over time and help athletes and sport enthu-
siasts to improve their physical preparation before
a competition. With PACE, we aim at offering a
secure, end-to-end encrypted platform to record,
analyse and share outdoor and fitness activities
without compromising the privacy. This document
describes the cryptography and security protocols
implemented by PACE.

2 End-to-end Encryption

When designing the security architecture of PACE,
we consider the public clouds to be insecure and
unable to store personal unencrypted data. While
we follow the best practices to secure our infras-
tructure, we also assume it to be vulnerable to an
malicious intrusion.

The security model of PACE relies on Elliptic
Curve cryptography. All the data are encrypted
on the users’ devices. To achieve this, each user

has a unique key pair for encryption and a unique
key pair for signing the data. These key pairs are
generated during the creation of an account and
the private keys are never known by anyone else
than their owner. It ensures that nobody, not even
PACE, can read the users’ data except the eventual
other users they may decide to share with. It also
protects again compromising and leaking some data
in case of an intruder gains a malicious access to the
infrastructure.

The encryption is implemented with NaCL using
the following libraries:

• Libsodium1 for Android and iOS. PACE has
open sourced its cryptography library for An-
droid and iOS based on Libsodium and is avail-
able on GitHub2.

• tweetnacl.js3 for the web.

3 Account Creation

During the account creation, a user profile is cre-
ated and is composed of the encryption and signing
key pairs and a profile key encryption. All the pro-
cedure is executed on the user’s device that can be
their mobile phone or their web browser. The first
step consists in generating the profile data with the
key pairs and different salts used for the profile en-
cryption and during authentication:

1. User chooses a username and enters a pass-
word.

2. An encryption key pair is generated. The pri-
vate key is randomly generated. The corre-

1https://libsodium.org
2https://github.com/withpaceio/

react-native-nacl-jsi
3https://tweetnacl.cr.yp.to

1

https://libsodium.org
https://github.com/withpaceio/react-native-nacl-jsi
https://github.com/withpaceio/react-native-nacl-jsi
https://tweetnacl.cr.yp.to


sponding public key is computed over the El-
liptic Curve Curve25519.

3. A signing key pair is generated. The private
key is randomly generated. The correspond-
ing public key is calculated using the Ed25519
algorithm.

4. A random 128 bits salt saltpassword is gener-
ated. It is used to derive a symmetric key from
the password for the authentication and for the
profile encryption.

5. A random 128 bits salt saltencryption is gen-
erated. It will be used to generate the profile
encryption key.

6. A random 128 bits salt salttoken is generated.
It will be used for the authentication.

In the next sections, we call profiledata the
set composed of the signing and encryption key
pairs and the salts saltpassword, saltencryption and
salttoken.
Once the profile has been generated, the private

keys are stored on the secure storage of the de-
vice if it is executed on the mobile phone of the
user. When running in browser, the private keys
are never stored. In both cases, the private keys
never leave the user’s device unencrypted.
The second step consists in encrypting and au-

thenticating the profile data using the secretbox
model of NaCL:

1. A symmetric key keypassword is derived from
the password using the Argon2id algorithm
with saltpassword.

2. A symmetric key keyencryption is derived
from keypassword using HKDF with the salt
saltencryption. The profile encryption key
keyencryption never leaves the mobile or the
browser of the user.

3. The profile data are encrypted using the
xsalsa20−poly1305 authenticated cipher with
the symmetric encryption key keyencryption.

As the third and final step, the encrypted pro-
file data, the salts saltpassword, saltencryption and
salttoken and the encryption and signing public
keys are sent to the backend. The private keys are

end-to-end encrypted and the public keys remain
publicly visible. The password and the profile en-
cryption key keyencryption are never sent over, not
even in a encrypted form.

4 Authentication and Pass-
word Change

4.1 Authentication

The authentication is implemented using the Se-
cure Remote Password protocol (SRP), version 6a.
Using this protocol, the users’ password are never
sent over the network. This is critical because the
key pairs are computed based on the password. Us-
ing SRP ensures that the password, or any derived
data from it, are never sent to the servers.

Once the authentication is successful, the server
sends a JWT access token, a JWT refresh token,
the encrypted profile data and the salts saltpassword

and saltencryption. With these data, the profile en-
cryption key keyencryption can be derived from the
password by following the same steps than during
the account creation. Finally, the profile data can
be decrypted.

4.2 Password Change

Because the profile is encrypted using a symmetric
key derived from the password, changing it requires
to re-encrypt the profile data using the key derived
from the new password.

Changing the password can be done from the mo-
bile application or the account settings web page.
In both cases, the user must be authenticated.
Once the user has chosen a new secure password,
the second step from the account creation is exe-
cuted resulting in a new encrypted profile and salts.
These are sent to the server as the final step of
changing a password.

5 Account Recovery

The users can choose to configure a recovery email
address and to generate a recovery passphrase for
them to store in a secure place. They will be used to
recover their data in case of a password loss. Their
data being end-to-end encrypted, it is not possible

2



for PACE to decrypt and recover their activities.
The account recovery requires an email address so
it is up to the user to choose whether to configure
it or not.

5.1 Account Recovery Configuration

At first, the user needs to configure an email ad-
dress that will be used to recover their account.
After entering their email address, it is sent to the
server and stored after being encrypted using the
algorithm AES −GCM − 256 to prevent a leak of
the email addresses in case of a malicious access to
the database. A link with an expiring verification
token is sent to the email address. The passphrase
configuration starts from here and once the user is
authenticated.
The recovery is based on the secretbox model of

NaCL and is configured following:

1. A BIP39 mnemonic is generated.

2. A random 128 bits salt saltrecovery is gener-
ated.

3. A symmetric key keyrecovery is derived from
the mnemonic using HKDF with the salt
saltrecovery.

4. The profile data are encrypted using the
xsalsa − poly1305 authenticated cipher with
the symmetric encryption key keyrecovery.

5. A random 128 bits salt saltkeyrecovery is gen-
erated.

6. The key keyrecovery is hashed on the client
side using the Argon2id algorithm with the salt
saltkeyrecovery.

7. The encrypted profile data, the salts
saltrecovery and saltkeyrecovery and the
hash of the recovery key are sent to the server.
The mnemonic and the key keyrecovery never
leave the mobile or the browser of the user.

The user is in charge of storing their mnemonic
in a safe place of their choice. They may decide to
change their recovery email address. In such case,
the whole procedure has to be reexecuted and a
new mnemonic will be generated. The previously
existing one will not be useful any more and can be
deleted by the user. At any point, there is at most
one valid recovery passphrase per user.

5.2 Recovering an account

When a user wants to recover their account, the
following steps are executed:

1. The user enters their username.

2. An email with a link containing an expiring
one-time recovery token is sent to the corre-
sponding recovery email address.

3. The user clicks on the link to prove their iden-
tity and the recovery token is verified by the
server.

4. The server sends the salts saltrecovery and
saltkeyrecovery.

5. The user enters their BIP39 mnemonic.

6. The recovery key keyrecovery is derived from
the mnemonic using HKDF with the salt
saltrecovery.

7. The key keyrecovery is hashed on the client
side using the Argon2id algorithm with the salt
saltkeyrecovery.

8. The hash of the key is sent to the server.

9. The server verifies that the hash of the key is
identical than the one stored. If successful, the
server sends the encrypted profile data.

10. The profile is decrypted using keyrecovery.
From this point, the user has gain access to
their secret signing and encryption keys, there-
fore are able to decrypt their data.

The final step of the account recovery is chang-
ing the password. Once the user has chosen a
new secure password, the random 128 bits salts
saltpassword, saltencryption and salttoken are regen-
erated the second and third steps of the account
creation are repeated.

6 Activity Encryption

PACE uses the box model of NaCL to encrypt and
authenticate the activities and the secretbox model
of NaCL to encrypt and authenticate the encryp-
tion keys. The activity encryption works as follows:

3



1. A symmetric encryption key keyactivity for the
activity is generated.

2. The activity data are encrypted using the
xsalsa − poly1305 authenticated cipher with
the encryption key keyactivity.

3. After using Elliptic Curve Diffie-Hellman
(ECDH) over the curve Curve25519, the re-
sult is hashed using the algorithm HSalsa20 to
obtain a shared secret between the public and
the private key of the user secretactivity.

At the moment of writing, PACE does not sup-
port activity sharing between several users. In
the future, this step will be repeated for each
public key of the users to share the activity
with.

4. The activity encryption key keyactivity is en-
crypted using xsalsa−poly1305 authenticated
cipher with the shared secret secretactivity.

5. The encrypted keyactivity and the encrypted
activity data are sent to the server.

The keyactivity is never sent to the server and
when running in the browser, the encryption keys
are never stored.

On the mobile device of the users, the encrypted
activity data are stored on the local file system.
With the signing and encryption secret keys store
in the secure storage of the devices, it enables the
support for offline mode without compromising the
data security. In case an activity is saved on the
device without connection, the encrypted data will
be automatically uploaded when the device will be
back online.

6.1 Activity Sharing

We briefly described how sharing an activity will
work in a future version of PACE. Sharing an ac-
tivity is done by sharing its symmetric encryption
key. For this, the owner needs to encrypt the ac-
tivity symmetric encryption key keyactivity with the
public key of the user to share with and to upload
it to the servers. By doing so, the storage footprint
is reduced: only the activity encryption key is en-
crypted separately for each user rather than all the
activity data.

6.2 Activity Decryption

Decrypting an activity is performed by following
the same steps than during the encryption in re-
verse order. Using their encryption private key, the
activity symmetric key is decrypted and result in
keyactivity in clear. The activity data can now be
decrypted.

6.3 Activity Metadata Encryption

Metadata can reveal meaningful information with-
out access to the data. As an example, with the
date of an activity, it would be easy to see if the
user practices sport on a regular basis and at which
frequency without having access to the activities
themselves.

PACE strives to have the minimal amount of
metadata stored in database. To continue with our
example, the date of the activities are encrypted
using the activity encryption key keyactivity. It en-
sures that this critical piece of information remains
known by the user only and behavioral patterns
cannot be deduced from the metadata.

When fetching the list of activities, the server re-
turns them by order of insertion in the database.
This has the downside of having potential reorder-
ing happening on the client side once the activities
are decrypted. However, we consider this tread off
being a much better solution than having the activ-
ities dates stored unecrypted, resulting in a much
lower respect of the privacy.

7 Conclusion

We described the cryptography and security pro-
tocols implemented in PACE to protect the pri-
vacy of the users while using a fitness tracker. We
presented how the activity data are encrypted and
stored on the mobile devices.

Geolocation, fitness and health data are all col-
lected by fitness tracker and used to provide very
useful insights for training. Yet, these are very sen-
sitive and can reveal critical information about the
users. With PACE, our goal is to provide a fitness
tracker that protects the privacy.

4


	Introduction
	End-to-end Encryption
	Account Creation
	Authentication and Password Change
	Authentication
	Password Change

	Account Recovery
	Account Recovery Configuration
	Recovering an account

	Activity Encryption
	Activity Sharing
	Activity Decryption
	Activity Metadata Encryption

	Conclusion

